Approximate Solutions to the Zakharov Equations via Finite Differences*

R. T. Glassey
Department of Mathematics, Indiana University, Bloomington, Indiana 47405

Received November 21, 1990; revised July 11, 1991

An energy-preserving, linearly implicit finite-difference scheme is presented for computing solutions to the periodic initial-value problem for the Zakharov equations. Solitary waves and colliding solitary waves are computed, and a comparison is made with previous calculations. (c) 1992 Academic Press, Inc.

I. INTRODUCTION

Zakharov introduced in [10] a system of equations to model the propagation of Langmuir waves in a plasma. The fluid-type equations take the form

$$
\begin{align*}
& i E_{t}+E_{x x}=N E \tag{ZS.E}\\
& N_{t}-N_{x x}=\frac{\partial^{2}}{\partial x^{2}}\left(|E|^{2}\right) . \tag{ZS.N}
\end{align*}
$$

Here E is the envelope of the high-frequency electric field, and N is the deviation of the ion density from its cquilibrium value.

We study here the periodic initial-value problem for a system with period L. Smooth initial values are prescribed for $0 \leqslant x \leqslant L$:
$E(x, 0)=E^{0}(x) ; \quad N(x, 0)=N^{0}(x), \quad N_{t}(x, 0)=N^{1}(x)$.

We know of only one previous study [6] of this system. There a spectral method is used; solitary waves and the interaction of two colliding solitary waves are computed. Although the convergence of the algorithm in [6] has not been demonstrated, computational studies of errors in [6] seem convincing.

One purpose of the present paper is to introduce a new

[^0]finite-difference scheme for (ZS). This scheme preserves discrete versions of the two standard invariants for (ZS):
\[

$$
\begin{align*}
& \qquad \int_{0}^{L}|E(x, t)|^{2} d x=\text { const. } \tag{2}\\
& \int_{0}^{L}\left(\left|E_{x}\right|^{2}+\frac{1}{2}\left(v^{2}+N^{2}\right)+N|E|^{2}\right) d x=\text { const. } \tag{3}
\end{align*}
$$
\]

We may call the expression in (3) the "energy"; there, v is defined by

$$
\begin{equation*}
v=-u_{x}, u_{x x}=N_{t} . \tag{4}
\end{equation*}
$$

In [3] we have proven that this scheme is first-order convergent in a natural "energy norm" (defined below) to the exact solution.

The second purpose of the present paper is to confirm the computational experiments from [6] involving the collision of two oppositely-directed solitary waves.

II. THE FINITE-DIFFERENCE SCHEME

Denote by L the period of the system, and let $T>0$ be an arbitrary final time. Given a positive integer J, we put

$$
\begin{equation*}
\Delta x=\frac{L}{J} ; \quad x_{j}=j \Delta x \quad \text { for } \quad j=0, \ldots, J \tag{5}
\end{equation*}
$$

For $\Delta t>0$ and an integer $n>0$ with $n \Delta t \leqslant T$, we put

$$
\begin{equation*}
t^{k}=k \Delta t \quad \text { for } \quad k=0, \ldots, n \tag{6}
\end{equation*}
$$

The standard difference operators are

$$
\begin{align*}
\delta u_{k} & =\Delta x^{-1}\left(u_{k+1}-u_{k}\right) \tag{7}\\
\delta^{2} u_{k} & =\Delta x^{-2}\left(u_{k+1}-2 u_{k}+u_{k-1}\right) \tag{8}
\end{align*}
$$

The scheme can then be written as

$$
\begin{gather*}
\frac{i\left(E_{k}^{n+1}-E_{k}^{n}\right)}{\Delta t}+\frac{1}{2} \delta^{2} E_{k}^{n}+\frac{1}{2} \delta^{2} E_{k}^{n+1} \\
=\frac{1}{4}\left(N_{k}^{n}+N_{k}^{n+1}\right)\left(E_{k}^{n}+E_{k}^{n+1}\right) \tag{9}\\
\frac{N_{k}^{n+1}-2 N_{k}^{n}+N_{k}^{n-1}}{\Delta t^{2}}-\frac{1}{2} \delta^{2} N_{k}^{n+1} \\
-\frac{1}{2} \delta^{2} N_{k}^{n-1}=\delta^{2}\left(\left|E_{k}^{n}\right|^{2}\right) \tag{10}
\end{gather*}
$$

In both expressions $k=1,2, \ldots, J ; n \geqslant 0$ in (9) while $n \geqslant 1$ in (10). E_{k}^{n}, N_{k}^{n} are to be J-periodic mesh functions, i.e.,

$$
\begin{equation*}
E_{k}^{n}=E_{j}^{n} ; \quad N_{k}^{n}=N_{j}^{n} \quad \text { if } \quad k \equiv j(\bmod J) \tag{11}
\end{equation*}
$$

The scheme is supplemented with the initial values

$$
\begin{align*}
& E_{k}^{0}=E^{0}\left(x_{k}\right) \tag{12}\\
& N_{k}^{0}=N^{0}\left(x_{k}\right) ; \quad N_{k}^{1}=N_{k}^{0}+\Delta t N^{-1}\left(x_{k}\right) \tag{13}
\end{align*}
$$

One begins by putting $n=0$ in (9) and solving for $\left\{E_{k}^{1}\right\}$ by using the data (12), (13). This involves the solution of a "periodic tridiagonal system" (cf. [7]). Then one puts $n=1$ in (10) and solves for $\left\{N_{k}^{2}\right\}$; here another such linear system arises. These systems are solved by a threefold application of "standard" tridiagonal solvers, as is described in [7]. This entire process is now repeated to generate $\left\{E_{k}^{2}\right\},\left\{N_{k}^{3}\right\}$, etc.

In order to describe the norm in which convergence takes place, we define the "discrete potential" $\left\{u_{k}^{n}\right\}$ by

$$
\begin{equation*}
\delta^{2} u_{k}^{n}=\frac{N_{k}^{n+1}-N_{k}^{n}}{\Delta t} \quad(k=1, \ldots, J-1) \tag{14}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
u_{0}^{n}=u_{J}^{n}=0 \tag{15}
\end{equation*}
$$

and the periodic extension

$$
\begin{equation*}
u_{k}^{n}=u_{j}^{n} \quad \text { if } \quad k \equiv j(\bmod J) . \tag{16}
\end{equation*}
$$

Thus $u_{k}^{\prime \prime}$ can be represented as

$$
\begin{equation*}
u_{k}^{n}=-\Delta x \sum_{j=1}^{J-1} G\left(x_{k}, x_{j}\right) \frac{N_{j}^{n+1}-N_{j}^{n}}{\Delta t} \tag{17}
\end{equation*}
$$

where

$$
G(x, y)= \begin{cases}x(1-y / L), & 0 \leqslant x \leqslant y \leqslant L \tag{18}\\ y(1-x / L), & 0 \leqslant y \leqslant x \leqslant L .\end{cases}
$$

A "compatibility condition" for definition (14) is, in view of (10), the initial conditions (12), (13), and periodicity, that

$$
\begin{equation*}
\sum_{j=1}^{J} N^{1}(j \not A x)=0 \tag{19}
\end{equation*}
$$

From [3] we have these invariants:
Thforfm 1. Under the assumptions above, the solution $\left\{E_{k}^{n}\right\},\left\{N_{k}^{n}\right\}$ of the difference scheme (9), (10) satisfies
(i) $\sum_{k=1}^{J}\left|E_{k}^{n}\right|^{2} \Delta x=\mathrm{const}$.
(ii) $\sum_{k=1}^{J} \quad \Delta x\left[\left|\delta E_{k}^{n+1}\right|^{2}+\frac{1}{2}\left(\delta u_{k}^{n}\right)^{2}+\frac{1}{4}\left(\left(N_{k}^{n}\right)^{2}+\left(N_{k}^{n+1}\right)^{2}\right)\right.$ $\left.+\frac{1}{2}\left(N_{k}^{n}+N_{k}^{n+1}\right)\left|E_{k}^{n+1}\right|^{2}\right]=$ const.

These correspond to the "continuous invariants" (2), (3) and are established by elementary but tedious summations by parts. It can be shown [3] that the discrete energy in (ii) is positive. In fact, from (ii) we can show that

$$
\begin{gather*}
\sum_{k=1}^{J} \Delta x\left[\left|E_{k}^{n+1}\right|^{2}+\left|\delta E_{k}^{n+1}\right|^{2}+\left(\delta u_{k}^{n}\right)^{2}\right. \\
\left.+\left(N_{k}^{n}\right)^{2}+\left(N_{k}^{n+1}\right)^{2}\right] \leqslant \mathrm{const} . \tag{20}
\end{gather*}
$$

In terms of the exact solution (E, N) of (ZS), we define the errors by

$$
\begin{align*}
& e_{k}^{n}=E\left(x_{k}, t^{n}\right)-E_{k}^{n} \tag{21}\\
& \eta_{k}^{n}=N\left(x_{k}, t^{n}\right)-N_{k}^{n}, \tag{22}
\end{align*}
$$

where $\left\{E_{k}^{n}\right\},\left\{N_{k}^{n}\right\}$ are computed from the scheme (9), (10) for $k=1, \ldots, J ; n \Delta t \leqslant T$. By analogy to (14), (17) we define $\left\{U_{k}^{n}\right\}$ by

$$
\begin{equation*}
U_{k}^{n}=-\Delta x \sum_{j=1}^{J-1} G\left(x_{k}, x_{j}\right) \frac{\eta_{j}^{n+1}-\eta_{j}^{n}}{\Delta t} \quad(k=1, \ldots, J-1) \tag{23}
\end{equation*}
$$

with $U_{0}^{n}=U_{J}^{n}=0$ and the obvious periodic extension. The convergence theorem from [3] can be stated as follows:

Theorem 2. Define the norms

$$
\begin{gather*}
\left\|e^{n}\right\|_{2}^{2}=\sum_{k=1}^{J} \Delta x\left|e_{k}^{n}\right|^{2} \tag{24}\\
\left\|\delta e^{n}\right\|_{2}^{2}=\sum_{k=1}^{J} \Delta x\left|\delta e_{k}^{n}\right|^{2} \tag{25}
\end{gather*}
$$

etc. Then under the above assumptions we have for $\Delta t=\Delta x$ sufficiently small the bound

$$
\varepsilon^{n} \leqslant c_{T} \Delta t
$$

for $n \Delta t \leqslant T$, where ε^{n}, the square of the "energy norm," is defined by

$$
\begin{align*}
\varepsilon^{n}= & \left\|e^{n+1}\right\|_{2}^{2}+\left\|\delta e^{n+1}\right\|_{2}^{2}+\left\|\delta U^{n}\right\|_{2}^{2} \\
& +\frac{1}{2}\left(\left\|\eta^{n+1}\right\|_{2}^{2}+\left\|\eta^{n}\right\|_{2}^{2}\right) \tag{26}
\end{align*}
$$

III. THE FORM OF THE SOLITARY WAVES

For the purpose of comparison we will use the notation of [6]. One seeks a solution to (ZS) in the form

$$
\begin{align*}
& E(x, t)=F(x-v t) e^{i \phi(x-u t)} \tag{27}\\
& N(x, t)=G(x-v t) \tag{28}
\end{align*}
$$

Here v, ϕ, u are real constants with $|v|<1 . F, G$ are L-periodic functions of one real variable $\xi=x-v t$. Substituting into (ZS. N) we obtain

$$
\begin{equation*}
v^{2} G^{\prime \prime}-G^{\prime \prime}=\left(|F(\xi)|^{2}\right)^{\prime \prime} \tag{29}
\end{equation*}
$$

and, hence,

$$
\begin{equation*}
G(\xi)=\frac{|F(\xi)|^{2}}{v^{2}-1}+c_{0}+c_{1} \xi \tag{30}
\end{equation*}
$$

By periodicity, $c_{1}=0$. We choose c_{0} so that

$$
\int_{0}^{L} N(x, t) d x=0
$$

Hence,

$$
\begin{equation*}
c_{0}=\frac{1}{L\left(1-v^{2}\right)} \int_{0}^{L}|F(y)|^{2} d y \tag{31}
\end{equation*}
$$

Since $N_{t}(x, t)=-v G^{\prime}(\xi)$, we have

$$
\begin{equation*}
N_{t}(x, 0) \equiv N^{1}(x)=-v G^{\prime}(x)=\frac{-2 v}{v^{2}-1} F(x) F^{\prime}(x) \tag{32}
\end{equation*}
$$

Thus the compatibility condition $\int_{0}^{L} N^{1}(x) d x=0$ holds automatically, since $F(\cdot)$ is L-periodic.

The equation for $F(\xi)$ which results from substitution into (ZS.E) is

$$
\begin{equation*}
F^{\prime \prime}(\xi)=\alpha F-\beta F^{3} \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{v^{2}}{4}-\frac{u v}{2}+c_{0} ; \quad \beta=\frac{1}{1-v^{2}} \tag{34}
\end{equation*}
$$

In order to obtain this we eliminated the imaginary coefficient of F^{\prime} by choosing

$$
\begin{equation*}
\phi=\frac{v}{2} . \tag{35}
\end{equation*}
$$

A first integral of this is

$$
\left(F^{\prime}\right)^{2}=\alpha F^{2}-\frac{\beta}{2} F^{4}+\widetilde{C}
$$

for some constant \widetilde{C}. Scaling now by $\eta=\sqrt{\beta / 2} \xi$ we obtain

$$
\begin{equation*}
\left(\frac{d F}{d \eta}\right)^{2}=-F^{4}+\frac{2 \alpha}{\beta} F^{2}+\frac{2 \tilde{C}}{\beta} \tag{36}
\end{equation*}
$$

Now we choose \tilde{C} so that the right side of (36) can be expressed in the form

$$
\begin{equation*}
\left(1-F^{2}\right)\left(F^{2}-k^{\prime 2}\right) \tag{37}
\end{equation*}
$$

for an appropriate constant k^{\prime}. A brief calculation shows that the choices

$$
\begin{equation*}
\widetilde{C}=\frac{\beta}{2}-\alpha ; \quad k^{\prime 2}=\frac{-2 \widetilde{C}}{\beta} \tag{38}
\end{equation*}
$$

give us (37). Then we have a standard differential equation

$$
\left(F^{\prime}(\eta)\right)^{2}=\left(1-F^{2}\right)\left(F^{2}-k^{\prime 2}\right)
$$

from which it follows that a periodic solution of (33) is given by

$$
\begin{equation*}
F(\xi)=d n\left(\frac{\xi}{\sqrt{2\left(1-v^{2}\right)}}, k\right) \tag{39}
\end{equation*}
$$

Here $d n(\cdot)$ denotes a Jacobian elliptic function (cf. [4, 9]), and

$$
\begin{equation*}
k^{2}+k^{\prime 2}=1 \tag{40}
\end{equation*}
$$

Solutions with different amplitudes are also possible [6]. The choice (38) now determines u :

$$
\begin{equation*}
u=\frac{v}{2}+\frac{2 c_{0}}{v}-\frac{\left(1+k^{\prime 2}\right)}{v\left(1-v^{2}\right)} \tag{41}
\end{equation*}
$$

In view of (35), $\phi=v / 2$, the exponential in the ansatz (27) will be L-periodic provided

$$
\frac{v L}{2}=2 \pi m \quad \text { for some } \quad m=1,2, \ldots
$$

Below, we will use $m=1$ so that

$$
\begin{equation*}
v=4 \pi / L . \tag{42}
\end{equation*}
$$

Therefore we will choose periods $L>4 \pi$.
Finally we enforce the periodicity of F. One knows that the function

$$
u \mapsto d n(u, k)
$$

is $2 K$-periodic, where

$$
K=\int_{0}^{\pi / 2} \frac{d \phi}{\sqrt{1-k^{2} \sin ^{2} \phi}}
$$

(cf. $[4,9]$). Since $F(\xi)=d n\left(\xi / \sqrt{2\left(1-v^{2}\right)}, k\right)$ is to be L-periodic, we are led to the relation

$$
\begin{equation*}
L=2 \sqrt{2\left(1-v^{2}\right)} K \tag{43}
\end{equation*}
$$

which will guarantee periodicity. Incidentally, the last equation is an interesting type of "inverse problem." Since L is given and v is known from (42), we need to find k so that (43) holds. We achieve this using educated guesses and a result from [1, p. 591]: for the function

$$
K(m) \equiv \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-m \sin ^{2} \theta}} \quad(0 \leqslant m<1)
$$

one has for appropriate numerical values a_{0}, \ldots, b_{2} the approximation

$$
\begin{align*}
K(m) \equiv & a_{0}+a_{1} m_{1}+a_{2} m_{1}^{2} \\
& +\left(b_{0}+b_{1} m_{1}+b_{2} m_{1}^{2}\right) \ln \left(\frac{1}{m_{1}}\right)+\varepsilon(m) \tag{44}
\end{align*}
$$

where $m+m_{1}=1$ and $|\varepsilon(m)| \leqslant 3 \cdot 10^{-5}$.
From (41) u is determined, and all the parameters will be known, once c_{0} is computed. For this we have from (31)

$$
\begin{align*}
c_{0} & =\frac{1}{L\left(1-v^{2}\right)} \int_{0}^{L} d n^{2}\left(\frac{\xi}{\sqrt{2\left(1-v^{2}\right)}}, k\right) d \xi \\
& =\frac{\sqrt{2\left(1-v^{2}\right)}}{L\left(1-v^{2}\right)} \int_{0}^{L / \sqrt{2\left(1-v^{2}\right)}} d n^{2}(u, k) d u \tag{45}
\end{align*}
$$

From (43) the upper limit here equals $2 K$. By symmetry of $d n(\cdot, k)$ then and by [9, p.518], we find

$$
\begin{equation*}
c_{0}=\frac{\sqrt{2}}{L \sqrt{1-v^{2}}} \cdot 2 \cdot \int_{0}^{\pi / 2} \sqrt{1-k^{2} \sin ^{2} \phi} d \phi \tag{46}
\end{equation*}
$$

This completes the structural computation of the solitary waves.

FIG. 1. $\left|E-E_{\mathrm{sol}}\right|, L=20, t=8$.

FIG. 2. $\left|E-E_{\text {sol }}\right|, L=20, t=16$.

FIG. 3. $\left|N-N_{\text {sol }}\right|, L=20, t=8$.

FIG. 4. $\left|N-N_{\text {sol }}\right|, L=20, t=16$.

FIG. 5. $|E|$ during collision, $t=0, t=12.8, t=16.0$.

IV. COMPUTATION OF SOLITARY WAVES

We ran the difference method (9), (10) with the following parameters (chosen and verified from [6]): $L=20$, $v=4 \pi / L=0.6283185 ; \quad k^{\prime}=4.5147 \cdot 10^{-4}, \quad K=9.089296$ (using (43) and (44)); $u=-1.73692$ (from (41)), $c_{0}=0.181786$ (from (46)). We made two runs with $h=\Delta t=\Delta x=0.1$ and $h=0.05$. For comparison, we computed the solitary wave solution (called $E_{\text {sol }}, N_{\text {sol }}$ in the figures). The figures show the absolute value of the errors $\left|E-E_{\text {sol }}\right|,\left|N-N_{\text {sol }}\right|$ at two real times 8 and 16 as functions of $x, 0 \leqslant x \leqslant 20$. (Of course E, N here denote the solution of the scheme (9), (10).) As is seen, cutting the step size in half roughly cuts the error in half, as expected. The maximum

FIG. 6. $|E|$ during collision, $t=19.2, t=25.6, t=31.9$.
amplitude of $\left|E_{\text {sol }}\right|$ is $\max |F|=1$; from (30) we obtain crudely that $N_{\text {sol }}$ satisfies the bounds $-1.6523=$ $1 /\left(v^{2}-1\right)<N_{\text {sol }}(x, t) \leqslant c_{0}<0.2$.

The initial values for E, N are clear from Section III. As for the time derivative N_{t}, we have (32) for which we need the fact that

$$
d n^{\prime}(u, k)=-k^{2} \operatorname{sn}(u, k) c n(u, k)
$$

in standard notation ([4]).

The Collision of Two Solitary Waves

Here we describe the results of our re-doing the computational experiment performed in [6]. On an interval
$0 \leqslant x \leqslant L \equiv 160$ we take as initial values two solitons (of period 20 , with parameters as in the preceding section) with oppositely-directed velocities. The right-moving soliton is centered at $x=70$; the left-moving soliton at $x=90$. By (46) with $L=160$, we obtain $c_{0}=0.02272323$. These initial values generate the graphs shown in [6, p. 493, 494.]

We ran the experiment twice, once with $h=\Delta t=\Delta x=0.1$ and again with $h=0.05$. In the figures we display for $h=0.05$ both $|E|$ and N at various (real) times as a function of $x, 0 \leqslant x \leqslant L=160$. Just before the interaction one has the picture shown at time 12.8 . The solitons roughly coincide at time $t=16$; the final graphs depict the behavior after the interaction is complete (at approximately $t=31.8$). The

FIG. 7. N during collision, $t=0, t=12.8, t=16.0$.

FIG. 8. N during collision, $t=19.2, t=25.6, t=31.9$.
values of the conserved discrete energy ε_{d} (from part (ii) of Theorem 1) are computed to be

$$
\begin{array}{ll}
\varepsilon_{d}=2.3339714 & (h=0.1) \\
\varepsilon_{d}=2.3307398 & (h=0.05)
\end{array}
$$

and remain the same at each time step to as many places as shown.

Comparison of our graphical results with those of [6] shows excellent qualitative agreement. Since the present finite-difference method is known to converge, we expect there is a theorem possible for the spectral method in [6].

In conclusion, the finite-difference method presented here generates output consistent with that of the spectral scheme given in [6]. The scheme conserves the two standard invariants and has been proven to converge.
Similar computations could be attempted in three space dimensions, where it is unknown if finite-time "blowup" can occur. In this case the energy can be negative, suggesting the possibility of singular behavior.

The computations were done on a Sun Sparc Station 1^{+} and on an Alliant FX/8; the C-code was compiled with gcc.

REFERENCES

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
2. J. Gibbons, S. G. Thornhill, M. J. Wardrop, and D. Ter Haar, J. Plasma Phys. 17, 153 (1977).
3. R. Glassey, Math. Comput. 58, 83 (1992).
4. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theurerns for the Special Functions of Mathematical Physics (Springer-Verlag, New York, 1966).
5. G. C. Papanicolaou, C. Sulem, P. L. Sulem, and X. P. Wang, preprint.
6. G. L. Payne, D. R. Nicholson, and R. M. Downie, J. Comput. Phys. 50, 482 (1983).
7. J. Strikwerda, Finite Difference Schemes and Partial Differential Equations (Wadsworth and Brooks/Cole, Pacific Grove, CA, 1989).
8. C. Sulem and P. L. Sulem, C.R. Acad. Sci. Paris A 289, 173 (1979).
9. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, Cambridge, UK, 1965).
10. V. E. Zakharov, Sov. Phys. JETP 35, 908 (1972).

[^0]: * Research supported in part by NSF DMS 8721721.

