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finite-difference scheme for (ZS). This scheme preserves 
An energy-preserving, linearly implicit finite-difference scheme is discrete versions of the two standard invariants for (ZS): 

presented for computing solutions to the periodic initial-value problem 
for the Zakharov equations. Solitary waves and colliding solitary waves L 
are computed, and a comparison is made with previous calculations. 
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I E(x, t)l 2 dx = const. (2) 
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(/EX12+$(~2+N2)+NIE12)dx=const. (3) 
1. INTRODUCTION 

0 

Zakharov introduced in [lo] a system of equations to We may call the expression in (3) the “energy”; there, u is 
model the propagation of Langmuir waves in a plasma. The defined by 
fluid-type equations take the form 

v=-u u x ? xx = N,. (4) 
iE, + E,X, = NE (ZS.E) 

iv,,-N,,=&2). (ZSN) 

Here E is the envelope of the high-frequency electric field, 
and N is the deviation of the ion density from its equilibrium 
value. 

The second purpose of the present paper is to confirm the 
computational experiments from [6] involving the collision 
of two oppositely-directed solitary waves. 

We study here the periodic initial-value problem for a 
system with period L. Smooth initial values are prescribed 
forO<x<L: 

II. THE FINITE-DIFFERENCE SCHEME 

Denote by L the period of the system, and let T> 0 be an 
arbitrary final time. Given a positive integer J, we put 

E(x, 0) = E’(x); N(x, 0) = No(x), N,(x, 0) = N’(x). 

In [3] we have proven that this scheme is first-order 
convergent in a natural “energy norm” (defined below) to 
the exact solution. 

A,=$; xj=jAx for j = 0, . . . . J. (5) 

We know of only one previous study [6] of this system. 
There a spectral method is used; solitary waves and the For At > 0 and an integer n > 0 with n At < T, we put 

interaction of two colliding solitary waves are computed. 
Although the convergence of the algorithm in [6] has not tk=k At for k = 0, . . . . n. (6) 
been demonstrated, computational studies of errors in [6] 
seem convincing. The standard difference operators are 

One purpose of the present paper is to introduce a new 
~~,=Ax~~(u~+~-u~) (7) 

* Research supported in part by NSF DMS 8721721. 62u,=dx~2(u,+,-2u,+U,~,). (8) 
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The scheme can then be written as A “compatibility condition” for definition (14) is, in view of 
(lo), the initial conditions (12), (13), and periodicity, that 

i(E;:i’-Et) 1 
At 

+Z6ZE;+;62E;+1 
i N’(jAx)=O. (19) 

+N;+N;+‘)(E;+E;+‘) 
J=I 

(9) 
From [3] we have these invariants: 

lv;+‘-2Iv;+Ay 1 THEOREM 1. 
At2 -PzNz+ 

Under the assumptions above, the solution 
t-C), IN:) f h dlff o t e z erence scheme (9), (10) satisfies 

-+32N;-1=62(,E;,z). (10) 
(i) xi=, IE;]‘Ax=const. 

(ii) CL, Ax[~GE;+‘~2+~(6u~)2+,((N,)2+(N;f+’)2) 

In both expressions k = 1,2, . . . . J; n 3 0 in (9) while n > 1 in 
+ $(N;f.+ N;+‘) lE”,+‘12] =const. 

(10). E;, NE are to be J-periodic mesh functions, i.e., These correspond to the “continuous invariants” (2), (3) 
and are established by elementary but tedious summations 

E;I.=Ei”, N;=N,” if k =j (mod J). (11) by parts. It can be shown [3] that the discrete energy in (ii) 
is positive. In fact, from (ii) we can show that 

The scheme is supplemented with the initial values J 

Ez = E”(xk) (12) 
,T, Ax [IE;+‘12+ 16E”k+‘12+(6u;)2 

N; = N”(xk); N;=N;+AtN--‘(x,J. (13) + (N;)2 + (N;+ 1)2] d const. (20) 

One begins by putting n = 0 in (9) and solving for (EL} In terms of the exact solution (E, N) of (ZS), we define 
by using the data (12), (13). This involves the solution of a the errors by 
“periodic tridiagonal system” (cf. [7]). Then one puts n = 1 
in (10) and solves for {N:}; here another such linear system e; = E(x,, t”) - EE (21) 
arises. These systems are solved by a threefold application of 
“standard” tridiagonal solvers, as is described in [7]. This r/;=N(xkr t”)-N;, (22) 

entire process is now repeated to generate {E:}, {N:}, etc. 
In order to describe the norm in which convergence takes where {E;}, { Ni} are computed from the scheme (9), (10) 

place, we define the “discrete potential” (ut} by- 

(j2g = Nk 
n+l -N” 

k 
k At 

(k = 1, . . . . J- 1) 

with the boundary conditions 

u;T=uI;=o 

and the periodic extension 

u; = 2.4,” if k =j (mod J). 

Thus u;l- can be represented as 

J-1 N”+‘-N? 
u;= -Ax 1 G(X,, X,) * 

*=I 
At ’ 

where 

G(x, Y) = 
x(1 - Y/L), Obx<y<L 

Y(l -x/L), o< y<xdL. 

for k = 1, . . . . J; n At < T. By analogy to (14), (17) we define 

{UZl bY 

(14) J-1 n+‘-q: 
U; = -Ax 1 G(x,, xi) ‘lj At J (k = 1, . . . . J- 1) 

j=l 

(23) 

(15) with U; = U; = 0 and the obvious periodic extension. The 
convergence theorem from [3] can be stated as follows: 

THEOREM 2. Define the norms 

(16) 

Ilenll~= i Ax letI’ (24) 
k=l 

(17) 
116e”ll:= 1 Ax lW12 

k=l 

(25) 

(18) 

etc. Then under the above assumptions we have for At = Ax 
sufficiently small the bound 

.?<c=At 
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for n At d T, where E”, the square of the “energy norm,” is In order to obtain this we eliminated the imaginary 
defined by coefficient of F’ by choosing 

en= Ilen+lll:+ 116e”+‘ll~+ llSUnll: 

+ ~m’~+‘ll:+ llfll3 (26) 
(35) 

A first integral of this is 

III. THE FORM OF THE SOLITARY WAVES 

For the purpose of comparison we will use the notation 
(F’)Z=zFZ-[F4+c 

of [6]. One seeks a solution to (ZS) in the form 
for some constant c. Scaling now by 9 = JB/2 5 we obtain 

E(x, t) = F(x - ut) er9(xpuf) 

N(x, t) = G(x - ut). 

(27) 

(28) 
= -F4+&F’+s. 

B P 
(36) 

Here u, 4, u are real constants with ]uI < 1. F, G are 
L-periodic functions of one real variable 5 = x - ut. 

Now we choose 2; so that the right side of (36) can be 

Substituting into (ZS.N) we obtain 
expressed in the form 

(1 -F2)(F2-k’2) 

and, hence, 
for an appropriate constant k’. A brief calculation shows 
that the choices 

(30) (38) 

By periodicity, c, = 0. We choose c0 so that give us (37). Then we have a standard differential equation 

Hence. 

I 
L 

N(x, t) dx = 0. (F’(v))* = (1 - F2)(F2 -k’*) 
0 

from which it follows that a periodic solution of (33) is given 
by 

1 

cO=L(l -u’) s L IF( dy. 0 (31) F(5) = dn (39) 

Since N,(x, t) = -UC’(~), we have Here dn( .) denotes a Jacobian elliptic function (cf. [4,9]), 
and 

P/,(x, 0) E N’(x) = -UC’(X) = s F(x) F’(x). (32) k2+k12=1. (40) 

Thus the compatibility condition it N1 (x) dx = 0 holds Solutions with different amplitudes are also possible [6]. 
automatically, since F( .) is L-periodic. The choice (38) now determines u: 

The equation for F(5) which results from substitution 
into (ZSE) is /v I 2~0 (l+k’*) 

2 v u(1 -u’)’ (41) 

F”(t) = crF- fiF3, (33) 
In view of (35), 4 = u/2, the exponential in the ansatz (27) 

where will be L-periodic provided 

UL 
-=2nrn 
2 

for some m = 1, 2, . . . 

581/100/2-12 
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Below, we will use m = 1 so that 

v = &c/L. (42) 

Therefore we will choose periods L > 47~. 
Finally we enforce the periodicity of F. One knows that 

the function 

uHdn(z.4, k) 

is 2K-periodic, where 

42 K=o J&q s 
(cf. [4,9]). Since F(c)= drz(t/dm, k) is to be 
L-periodic, we are led to the relation 

L=2,/mK (43) 

which will guarantee periodicity. Incidentally, the last equa- 
tion is an interesting type of “inverse problem.” Since L is 
given and v is known from (42), we need to find k so that 
(43) holds. We achieve this using educated guesses and a 
result from [ 1, p. 5911: for the function 

one has for appropriate numerical values a,, . . . . b, the 
approximation 

K(m)sq,+a,m,+a,m; 

+(6,+b,m,+6,m~)ln 
( > 

$ +4m), (44) 

where m + m, = 1 and j&(m)1 < 3. 10P5. 
From (41) u is determined, and all the parameters will be 

known, once c0 is computed. For this we have from (31) 

(45) 

From (43) the upper limit here equals 2K. By symmetry of 
dn( ., k) then and by [9, p. 5181, we find 

Jz 
co=LJg 

.2 . joni &-&i&i dqS. (46) 

x-values 

-e h=O.l + h=0.05 

FIG. 1. IE- E,,, 1, L = 20, I = 8. 

00.4, 

O.CQ 

I A * 

z 
2 w o.o- 
Lh 

- o.ol- + 

1 2 3 4 5 6 7 6 9 10 11 12 13 14 16 17 16 19 20 15 

- h=O.l + h=0.05 

FIG. 2. Ii?-&,I, L=20, t= 16. 

12 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 16 19 20 

x-values 

- h=O.l + h=0.05 

This completes the structural computation of the solitary 
waves. FIG. 3. IN-NN,,,l, x5=20, t=8. 
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1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 18 19 20 

x-values 

I - h=O.l t h=O.OS 1 

FIG. 4. IN-N,,,I,L=20,t=16. 

IEl ,t=O.OO 

I I 

/ iJ.L. 

1EI .t=12.8 

V 

/ 

IEI .t=18.0 

40 80 120 40 80 120 

FIG. 5. /El during collision, t =O, f = 12.8, t = 16.0. FIG. 6. [El during collision, t = 19.2, I = 25.6, I = 31.9. 

IV. COMPUTATION OF SOLITARY WAVES 

We ran the difference method (9) (10) with the following 
parameters (chosen and verified from [6]): L = 20, 
v = h/L = 0.6283185; k’ = 4.5147. 10-4, K = 9.089296 
(using (43) and (44)); u = - 1.73692 (from (41)), 
c,=O.181786 (from (46)). We made two runs with 
h = At = Ax = 0.1 and h = 0.05. For comparison, we com- 
puted the solitary wave solution (called Eso,, Nso, in the 
figures). The figures show the absolute value of the errors 
IE- Esol 1, IN- Nsol j at two real times 8 and 16 as functions 
of X, 0 Q x Q 20. (Of course E, N here denote the solution of 
the scheme (9), (lo).) As is seen, cutting the step size in half 
roughly cuts the error in half, as expected. The maximum 

IEI, t=19.2 

I 
IE 1 .t=25.8 

IEl ,t=31.9 
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amplitude of IE,,, ) is max IF] = 1; from (30) we obtain 0 < x < L = 160 we take as initial values two solitons (of 
crudely that Nso, satisfies the bounds - 1.6523 = period 20, with parameters as in the preceding section) with 
I/(u2 - 1) < NsO,(x, t) < cg < 0.2. oppositely-directed velocities. The right-moving soliton is 

The initial values for E, N are clear from Section III. As centered at x = 70; the left-moving soliton at x = 90. By (46) 
for the time derivative N,, we have (32) for .which we need with L= 160, we obtain c,=O.O2272323. These initial 
the fact that values generate the graphs shown in [6, p. 493,494.l 

dn’(u, k) = -k2sn(u, k) cn(u, k) We ran the experiment twice, once with h = At = Ax = 0.1 
and again with h = 0.05. In the figures we display for 

in standard notation ([4]). h = 0.05 both (E( and N at various (real) times as a function 

The Collision of Two Solitary Waves of x, 0 d x d L = 160. Just before the interaction one has the 
picture shown at time 12.8. The solitons roughly coincide at 

Here we describe the results of our re-doing the computa- time t = 16; the final graphs depict the behavior after the 
tional experiment performed in [6]. On an interval interaction is complete (at approximately t = 31.8). The 

-1 ---+-I- 
NJ-O.0 

NJ= 12.8 

-1 

N.t=16.0 : 

N,t=lQ.S 

NJ=256 

N.t=31.9 

FIG. 7. N during collision, t = 0, f = 12.8, f = 16.0. FIG. 8. N during collision, t = 19.2, t = 25.6, f = 31.9. 
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values of the conserved discrete energy Ed (from part (ii) of 
Theorem 1) are computed to be 

Ed= 2.3339714 (h=O.l) 

Ed = 2.3307398 (h = 0.05) 

and remain the same at each time step to as many places as 
shown. 

Comparison of our graphical results with those of [6] 
shows excellent qualitative agreement. Since the present 
finite-difference method is known to converge, we expect 
there is a theorem possible for the spectral method in [6]. 

In conclusion, the finite-difference method presented here 
generates output consistent with that of the spectral scheme 
given in [6]. The scheme conserves the two standard 
invariants and has been proven to converge. 

Similar computations could be attempted in three space 
dimensions, where it is unknown if finite-time “blowup” can 
occur. In this case the energy can be negative, suggesting the 

The computations were done on a Sun Spare Station 1 + 
and on an Alliant FX/8; the C-code was compiled with gee. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

9. 

possibility of singular behavior. 10. 
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